Abstract—Leaf Spring is one of the oldest forms of suspension units employed in automobiles. To meet the needs of natural resource conservation and energy economy, automobile manufacturers have been attempting to reduce the weight of vehicles in recent years. Extensive research has been made in this area by researchers and engineers so as to reduce the weight of the suspension unit still satisfying the demand of smooth and safe ride quality. Researchers and engineers are working on applying various design and material combinations to satisfy the design criteria and reduce the weight of the unit. The design failure occurs either during service or after its life is completed. The failure in service occurs either due to extreme conditions or due to manufacturing defects. This failure can be catastrophic. One of these failures is due to cracks in leaf springs. These cracks are present either on surface or beneath. These are in very minute size. During service this crack expands and when it reach surface the component may fail catastrophically over the period of time during service. An effort has been made to analyze the effect of Crack on the Stress generation in a Leaf Spring. Also, modal analysis will be performed to analyze the effect of crack on the natural frequency of the leaf spring. The case is analyzed analytically, using simulation in ANSYS and the results will be validated by experimental testing on UTM for Leaf Spring with and without Crack. The Maximum bending stress is calculated for leaf spring.

Keywords—Bending Stress, Crack, Leaf Spring, Modal analysis

I. INTRODUCTION

To decrease the weight of vehicles in recent years is the basic need of industry. The suspension spring is one of the most important systems in automobiles which reduces the vibration and absorbs jerks during riding. Steel has been vigorously developed for many applications. Other advantages of steel are: (a) the possibility of reducing noise, vibrations, and ride harshness due to their high damping factors, which means lower maintenance costs; and (c) lower tooling costs, which have a favorable impact on manufacturing costs. Springs are crucial suspension elements in cars; need to reduce the vertical vibrations due to road irregularities. The function of the springs, in an automobile industry, is to maintain good control and passenger comfort. Behavior of leaf spring is nonlinear; whose weight is high, and change in solid axle angle due to weight transfer. This leads to over steer and directional instability under such a condition it is very difficult for the driver to control the vehicle. Like this, some defects of metallic leaf spring observe so considering automobile development and importance of relative aspects. Where graphite and carbon fiber demonstrate better performance over steel material, however due to cost and availability limits usage on a wide scale. The present work is restricted to leaf spring. Many papers were devoted to finding spring geometry. In this work, stress-strain study and modal analysis of Leaf spring is being done with and without Crack.

II. LITERATURE REVIEW

N. K. Mukhopadhyay et al. in his paper carried out failure analysis of a leaf spring where hardness and tensile testing, and residual stress evaluation by X-ray diffraction studied where the cracks have been attributed to an improper quenching process. It shows that some of these quench cracks have propagated by a fatigue mode which is confirmed by the presence of beach marks on the fracture surface. Where observation of intergranular cracking and presence of FeS sort of grain boundary might have facilitated crack growth and led to failure. It is suggested that quenching should
be carried out by recommended procedures guided by the thickness of the component and the composition of the steel.

Peiyong Qin et al. [2002] in his paper studied leaf spring design mainly based on simplified equations and by the trial-and-error methods. These simplified equations of the models were limited to the three-link mechanism and beam theory. Where paper presents detailed finite element modeling and analysis of a two-stage multi-leaf spring, a leaf spring assembly, and a Hotchkiss suspension is using ABAQUS. Due to non-linearity from large deformation, interleaf contact, and friction was included. The stresses and strains under different loads were analyzed.

C.K.Clarke et. al. [2005] in this paper presented the observation about the accident sequence of a rear leaf spring on a Sports utility vehicle in terms of fractured surface analysis and residual-strength estimates. The fractured specimen was checked using Stereomicroscopy, revealed a step in the fracture surface at this location, with deep secondary cracking along the mid plane. Impact of secondary cracks along mid plane of the leaf spring on the strength and leading to failure were evaluated. Failure analysis concluded that sulphur segregation lead to weakening of spring. It was cracked some time in advance and prior cracking in the leaf spring was extensive enough to reduce the strength of the spring to the point where normal dirt road forces were adequate to produce rupture.

Gulur Siddaramanna et al. [2006] said in this paper presented a low cost fabrication for complete mono composite leaf spring leaf spring with bonded end joints. They also did a general study on the analysis and design. Single leaf with variable thickness and width for constant cross sectional area of unidirectional glass fiber reinforced plastic (GFRP) with similar mechanical and geometrical properties to the multileaf spring, was designed, fabricated by the hand lay-up technique and tested. Comparison of the steel spring and the composite spring has stresses that are much lower, the natural frequency is higher.

Agawam et al. [2006] said in this paper to improve fatigue strength of materials by creating residual stress field by the shot peening. Fatigue strength of shot peened leaf springs has been determined from laboratory. Fatigue strength of EN45A leaf spring of steel specimen is with the help of experiments as a function of shot peening in the conditions used for full-scale leaf springs testing in industries.

E. Mahdi et al. [2006] said paper study on composites material to challenge in vehicle suspension. The changes can be achieved by employing a new material. In this paper, performance of woven roving wrapped composite springs has been predicted by analytically and experimentally. The results showed that the ellipticity ratio increases the spring rate and failure loads.

Senthil Kumar et al. [2007] in this paper discussed regarding static and fatigue analysis of leaf spring which is made by glass fiber reinforced. The dimensions of an existing conventional steel leaf spring a LMV are taken and are verified by design. Due to this load carrying capacity and weight of composite leaf spring are compared with that of steel leaf spring analytically and experimentally. Fatigue life of both leaf springs is predicted. Compared to steel spring, the composite leaf spring is found to less stress, high stiffness and high natural frequency than that of existing steel leaf spring. Prawoto et al. [2008] said in this paper automotive suspension coil springs and their fundamental stress distribution. Failure of coil’s perform due to improper than the coil springs are used in lower stress. Failures presented range from the very basic including insufficient load carrying capacity, raw material defects.

Fuentes et al. [2009] said in this paper the origin of premature fracture of leaf springs is due to common failure analysis procedures. From this concluded that fracture occurred by a mechanism initiated at the central hole which is suffered the highest tensile strength.

Wenyi Peng et al. [2010] said in this paper the analyzed the fracture of 60Si2Mn spring flat steels during punching by use of the microscope and a Charpy impact tester. Results show that the fracture of 60Si2Mn spring during cold-punching is due to the non-homogenization. Collapsing fracture is characteristic with cleavage and pearlites.
III. OBJECTIVE

The main objectives of the project is
(1) To determine stress for steel Leaf spring without Crack by taking steel leaf spring of Light duty vehicle with specific dimension and applying static load on leaf spring gradually.
(2) To determine effect of crack on stress and Natural Frequency for steel leaf spring with Crack depth by taking steel leaf spring of Light duty vehicle with specific dimension and applying static load on leaf spring gradually.
(3) Conducting Modal analysis on leaf spring with and without cracks. The results obtained can be used for comparison purpose of leaf springs.

IV. ANALYTICAL SOLUTION

A. Material properties and physical parameters of steel leaf spring. The material used for steel leaf springs is usually plain carbon steel having 0.90 to 1.0 % carbon. The leaves are heat treated once the forming process is completed. The heat treatment of spring steel produces greater strength & therefore greater load capacity, greater range of deflection & better fatigue properties.

According to Indian standards, the recommended materials are
1) For automobiles – 50 Cr1, 50 Cr1V23, and 55 Si 2Mn 90 all used in hardened & tempered state.
2) For rail road strings – C 55 (Water-hardened), C75 (Oil – hardened), 40 Si 2Mn 90 (Water – hardened) & 55 Si 2 Mn 90 (Oil – hardened) In this project testing & analysis is done for steel leaf spring of material EN 45.

<table>
<thead>
<tr>
<th>Table 4.1: Leaf Spring Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>1) St. length in mm</td>
</tr>
<tr>
<td>2) Leaf thickness in mm</td>
</tr>
<tr>
<td>3) Leaf width in mm</td>
</tr>
<tr>
<td>4) Camber in mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4.2: Material Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>1) UTSS</td>
</tr>
<tr>
<td>2) Tensile Strength</td>
</tr>
<tr>
<td>3) Young’s modulus</td>
</tr>
<tr>
<td>4) Poisson’s ratio</td>
</tr>
<tr>
<td>5) Density</td>
</tr>
</tbody>
</table>

Analytical Calculation

We know that for leaf spring Bending Stress is calculated by using Flexural formula as below. For any load, bending stress value is calculated as follows,

\[\sigma = \frac{6 \times w \times L}{b \times t^2} \]

The Modal Frequency for the cantilever beam is calculated using the formula [11];

\[f = C \times \sqrt{\frac{E I}{\rho A L^4}} \]

where C is a constant, whose value is 0.52 for 1st Mode, 3.62 for 2nd mode and 9.62 for third mode [11].
- E = Young’s modulus of Elasticity, in N/m²
- I = Moment of Inertia, in m⁴
- ρ = Material Density, in Kg/m³
A = Cross Sectional Area, in m2,
L = Length of the cantilever beam, in m.
The Natural Frequency for the cantilever beam using analytical formula is 22.517 Hz.

V. FINITE ELEMENT ANALYSIS OF LEAF SPRING BY ANSYS FEM
PACKAGENALYTICAL SOLUTION

A. CAD modeling
The CAD models of the eye design were prepared in CATIA V5 and the analysis and comparison of results are performed using ANSYS 14.5. The CAD model of Leaf spring is shown in Figure 5.1.

B. Boundary Conditions
Both the springs were analyzed for static strength and deflection using finite element analysis. For steel leaf spring center bolt, u-clamp rebounded clip conditions are included in the boundary conditions. Non-linear 3D finite element analysis has been done to predict stress and deflection values in the spring.

VI. EXPERIMENTATION
The steel leaf springs are tested by using leaf spring test rig. The experimental set up is shown in Figure 6.1. The leaf springs are tested by following standard procedures recommended. The spring to be tested is examined for any defects like cracks, surface abnormalities, etc. The spring is loaded from zero deflection to the prescribed maximum deflection and back to zero. The load is applied at the center of spring. The figure 6.2 shows leaf spring with strain gauges attached along its length.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Natural Frequency as per FFT(Hz)</th>
<th>Natural Frequency as per FEA(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.30</td>
<td>22.64</td>
</tr>
<tr>
<td>2</td>
<td>78.13</td>
<td>73.817</td>
</tr>
<tr>
<td>3</td>
<td>107.40</td>
<td>109.86</td>
</tr>
<tr>
<td>4</td>
<td>156.30</td>
<td>173.70</td>
</tr>
<tr>
<td>5</td>
<td>234.40</td>
<td>270.14</td>
</tr>
</tbody>
</table>
VII. MODAL ANALYSIS OF LEAF SPRING WITH TRANSVERSE CRACK

Now to study impact of the transverse crack on the leaf spring performance, we analyses the same in ANSYS by considering a three crack depths values and at a distance L form Centre bolt hole. The Von misses stress and the modal analysis have been performed on the leaf spring for three depths. Natural frequencies for five modal shapes for four crack depths as per FEA are tabulated in Table 6.1.
VIII. RESULTS AND DISCUSSION

8.1 Stress Analysis of Leaf Spring

A comparison has been made between Load and Stress values in the leaf spring for no crack and for crack depths of 1.5mm, 2.5mm, 3.5mm and 5mm. From the graphs, it is observed that the Stress in the leaf spring increases with increase in load. Further, the value of stress increases with the increases in the crack depth in leaf spring for given load range.

8.2 Modal Analysis of Leaf Spring

The Modal analysis was conducted for the leaf spring for without crack and with different crack depths in Finite element analysis and experimentally using the FFT analyzer. The results obtained are compared in below graphs shown in Figure: 8.2

Figure: 8.1 Comparison of FEA Vs Experimental Stress values of Leaf spring for different loads condition and for crack depth of condition (a) No crack, (b) 1.5 mm, (c) 2.5mm, (d) 3.5mm, (e) 5mm.

Figure: 8.2 Comparison of Modal frequencies for leaf spring for (a) no Crack, (b) 1.5 mm crack depth, (c) 2.5 mm crack depth, (d) 3.5 mm crack depth, (e) 5mm crack depth.
From the results it is observed that the experimental values of modal frequency calculated using FFT, nearly matches with the FEA results for Leaf spring for no crack and different crack conditions for first three mode shapes. The natural frequency of the leaf spring decreases with the increase in the crack depth. With the increase in crack depth the modal frequency is decreasing.

IX. CONCLUSION

This work involves the study of behavior of EN 45 material steel leaf spring with varying load and natural frequency prediction with and without crack. As well as effect of crack on stress and natural frequency with varying crack depth is evaluated by using strain gauges and FFT analyzer. It is observe that as the crack depth increases stress value increase and natural frequency decrease. A computer program in C language is prepared for calculating stress and deflection of leaf spring.

REFERENCES

